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Abstract. The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic
boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical
ensemble the phase and order-order boundaries for charge orderings are obtained. The phase diagrams
include three types of charge ordered phases and the nonordered phase. The system exhibits very rich
structure and shows unusual multicritical behavior. In the limiting case of tij = 0, the EHM is equivalent
to the pseudospin model with single-ion anisotropy 1

2
U , exchange interaction W in an effective magnetic

field
(
µ − 1

2
U − z0W

)
. This classical spin model is analyzed using the MC method for the canonical

ensemble. The phase diagram is compared with the known results for the Blume-Capel model.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.45.Lr Charge-density-wave systems
– 75.10.Hk Classical spin models – 64.60.Ak Renormalization-group, fractal, and percolation studies of
phase transitions

1 Introduction

After discovery of high temperature superconductors, evi-
dencing the existence of the charge density waves (CDW)
in such materials, the research work on charge orderings
has been in the main flow of condensed matter physics.
The problem of reciprocal competition and coexistence of
CDW phase and other orderings has been widely stud-
ied in literature ([1] and references therein). The charge
ordering of strongly correlated electron systems has re-
cently attracted much attention also, due to a consider-
able effect on the colossal magnetoresistance observed in
the manganese perovskite compounds (La1−x Srx MnO3,
Pr1−xCaxMnO3) [2]. It should be emphasized that charge
order (CO) was observed not only at commensurable lat-
tice filling, but also in a broad doping regime [3].

The adequate model for description of charge-ordered
electron systems is the extended Hubbard model (EHM)
[4–8]. Detailed analysis of the model has been made for
a special case of quarter- or half-filled band, although
there are known results for the whole range of electron
concentration [9–11], but this general case has been rel-
atively poorly examined. The basic limiting version of
EHM, suitable for description of CO, is the case of the
very narrow-band, when tij � U, W . We can go to
the classical limit of the model and put tij = 0 (so-
called extended Hubbard model in the atomic limit or
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UV model). Many authors have studied critical behav-
ior of this model [12–25] and the staggered charge order
was observed irrespectively of the method used. On the
other hand, the experimental observations of the CO in-
sulating phase in many compounds with very narrow-band
(BaBixPb1−xO3, Cs2SbCl6, Fe3O4, CsAuCl3 and several
complex TCNQ salts; [19] and references therein) motivate
to theoretical research on the extended Hubbard model in
the atomic limit.

We present here the results of MC calculations for 2D
AL-EHM on a square lattice with periodic boundary con-
ditions (PBC). We obtain the phase diagrams in the whole
range of electron concentrations {0, 2} and determine the
order-order boundaries.

The Hamiltonian of AL-EHM has the form

H = U
∑

i

ni↑ni↓ + W
∑

ij

ninj − µ
∑

i

ni, (1)

where ni = ni↑ + ni↓ is the number of electrons on the ith
site {0, ↑, ↓, ↑↓}, U represents the on-site and W intersite
Coulomb interaction (in this paper we assume the U, W ≥
0 case only) and µ is the chemical potential.

The structure of this paper is as follows. In Section 2
we discuss details of the simulation methods we use, the
statistical ensembles and give the criteria for critical and
order-order transitions. Using the grand canonical en-
semble (GCE) we present the way to obtain n(µ) curve
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(n is the total electron concentration), which is crucial for
the study. Much attention is devoted to the ’contour clus-
ter’ defined for ordered phases. We present a percolation
probability analysis for defined clusters.

In Section 3 we present results for AL-EHM equa-
tion (1). Evidence is provided for the existence of three
types of CO phases and the nonordered (NO) phase. The
system exhibits the first- and second-order transitions and
tricritical points. The phase diagram also presents the
order-order boundaries.

In Section 4 the equivalence between the model (1) and
the pseudospin model with double “zero” state degeneracy
in the magnetic field is proved. We present also the trans-
formation to the well-known Blume-Capel (BC) model
with a temperature-dependent single-ion anisotropy. Our
results are in very good compatibility to a detailed anal-
ysis of BC model performed by the MC method [29–31].
The presentation of order-order structural boundaries is
new in our analysis (analogous calculations for BC model
have been given in our recent paper [33] using the Wang-
Landau flat histogram algorithm).

In the Appendix we present a comparison of our re-
sults with those obtained by analytical methods, mean
field (MFA) and Bethe-Peierls (BPA) approximation.

2 Details of the simulation methods

To simulate the behavior of AL-EHM we use the grand
canonical ensemble. In this distribution the model an-
alyzed describes for example adsorption of electron gas
with the maximum double site coverage on a lattice. In a
general case the model is applicable to a two-component
lattice gas [24].

A long-time GCE Monte Carlo (GCMC) simula-
tion [26] is adopted for relatively small systems (L =
10–40) described by model (1), while for large systems
(L = 60–80) we analyze the pseudospin model (cf. Eq. (3))
using the canonical Monte Carlo. The results of both
methods are complementary.

In our simulation we use a local update method deter-
mined by elementary runs [26]. GCMC algorithm includes
three sequential update steps:

insertion of the particle: we randomly choose the spin
direction (up/down); we randomly choose a site; if the
local register of spins in this direction is empty we ac-
cept the motion with a proper probability (depending
on the number of particles in the system, the interac-
tions and temperature); and we introduce the particle
into the register;
removal of the particle: we randomly choose a particle
from the register; we accept its removal from the regis-
ter with a proper probability; we clear out the register
cell and the last position of the register we move to the
emptied place to ensure the register continuity;
move of the particle (the canonical part): we randomly
choose a particle from the register, randomly choose a
site and check if there is an electron with the same

spin at the site, if it is not there we accept the move
with a standard Metropolis probability, and we change
the register record. In general, this procedure can be
omitted being a simple combination of removal and
insertion.

For the spin model we use a standard Metropolis update
(the simulations for the canonical case we have used for
comparative purposes). More recent MC methods for spin
models (e.g. BC model) are presented by Loison et al. [27].

To analyze the charge ordered states, we take into ac-
count the on-site and nearest-neighbor intersite interac-
tions. We divide the square lattice into two interpenetrat-
ing sublattices A, B and define the charge order parameter
as ∆ = 1

2 |nA − nB|, where nA, nB are the electron con-
centrations on sublattices A and B, respectively.

Detailed analysis of the thermodynamic characteris-
tics (such as the order parameter, internal energy, spe-
cific heat, charge order susceptibility) has been performed
(i) as a function of the chemical potential µ for a fixed
temperature or (ii) as a function of temperature kBT for
a fixed electron concentration (Fig. 1). Such an analysis
brings about the range of existence of the CO phase. As
our analysis is limited to a restricted number of sites of
the system we observe the finite-size effects on the order
parameter (the finite value of ∆ over critical temperature,
cf. Figs. 1b, 1c). Precise location of the critical points has
been determined by the discontinuity of the specific heat
and the charge order susceptibility.

The most essential characteristic of our analysis is the
adsorption isotherm defined as the average site occupa-
tion as a function of the chemical potential n(µ), which
allows as to plot phase diagrams as the function of electron
concentration. For each value of µ we make about ∼104

Monte Carlo steps (MCS) for the 2nd-order transition and
about ∼ 105–106 for the 1st-order one.

In the case of 1st-order transition the system described
by GCE reaches equilibrium after a very large number of
simulation steps. Analysis of a discontinuous transition is
difficult, therefore, we adopt the histogram method also.

It is interesting to analyze structural details of charge
ordered states. In our simulation we analyze the existing
clusters for each generated sample, using the cluster find-
ing routine [32]. It turns out that in all ordered states we
can find a spanning cluster with some staggered structure.
In AL-EHM there are three different, elementary and en-
ergetically stable charge ordered structures (cf. Fig. 4):

LCO – Low Charge Order (1010 or 1212);
HCO – High Charge Order (2020);
ICO – Intermediate Charge Order (x0y0 or x2y2,
where x, y = {1, 2}, excluding the case when for whole
ordered domain x = y).

The first-Low Charge Order is realized for a checkerboard
combination of electrons (holes) and empty (full) sites;
the second-High Charge Order refers to electron pairs and
empty sites. The last charge ordered state is a simple
combination of LCO and HCO structures, therefore this
state can be called the Intermediate Charge Order. Be-
yond these three orders we observe the disordered states
denoted as NO.
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Fig. 1. Example of simulation results. (a) Phase diagram for
U/4W = 0.8, the second- and first-order transitions are in-
dicated by the solid and the dashed curves, respectively. The
thin lines indicate order-order boundaries. Detailed analysis
performed for selected parameters is presented below; (b), (c)
charge order parameter ∆ and specific heat as a function of
temperature for fixed concentrations (n = 0.70; 0.96); (d) ad-
sorption isotherm n(µ), charge order parameter ∆, CO suscep-

tibility χ∆ and percolation probabilities P
(phase)
S of the ordered

structures for kBT/W = 0.25. Other denotations in the text.

Fig. 2. The percolation probabilities of the ordered phases
for different lattice sizes (the exemplary plot for U/4W = 0.6
and kBT/W = 0.32). The percolation thresholds for infinite
lattice for LCO ↔ ICO ↔ HCO sequence are obtained by the
intersection method.

The exact ground state analysis for AL-EHM [23]
shows that there are two different charge ordered states
(in our notation: LCO and HCO). Similar results for the
Blume-Capel model [29] give two AF phases (1, −1) and
(0, 1) in the ground state. Until now it has been an open
question which kind of ordered structures exist at finite
temperatures in the models considered. No exact evidence
for the existence of finite-temperature order-order bound-
aries in AL-EHM [21] as well in the equivalent Blume-
Capel model [29] has been found yet. The mean-field re-
sults show that such internal boundaries are present in a
limited range in finite-temperatures [19]. It is very inter-
esting to analyze this problem again. For T > 0 we can
show the existence of ordered structures (especially the
infinite contour clusters) which are present in the ground
state as pure phases. In our work we have made the per-
colation probability analysis. Such a quantity PS

(phase) is
defined as a fraction of conducting samples (in the sense
of a spanning cluster of phase occurring in the sample)
during one cycle of simulation. The percolation transition
points are obtained as abscissa of the points of intersection
of a family of the percolation curves for different finite-size
results (the intersection method [34]). Thus defined per-
colation threshold is very well determined in the whole
range of the model parameters (Fig. 2).

3 Review of the results

Here we present results in the whole range of electron
concentrations 0 ≤ n ≤ 2. Since Hamiltonian (1) exhibits
the electron-hole symmetry some diagrams are presented
in the |n − 1| symmetrical plane.
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Fig. 3. The ground state phase diagrams (extrapolated from
kBT/W = 0.01) as a function (a) of the reduced chemical
potential µ̄/4W = (µ − 1

2
U − 4W )/4W and U/4W , (b) of

the electron concentration n and U/4W . Denotations: NO –
nonordered phase, PS – phase separation of LCO and HCO.

3.1 Ground state phase diagram

The left part of Figure 3 presents the phase diagrams of
model (1) as a function of the reduced chemical potential
µ̄/4W = (µ − 1

2U − 4W )/4W and the model interaction
ratio U/4W for the extrapolated ground state (GS). We
observe only two staggered charge ordered phases (LCO,
HCO) and the NO phase. The linear character of phase
boundaries between phases is identical with that con-
cluded from the analytical results [19–21]. The phase tran-
sitions LCO ↔ NO is 2nd-order, while the HCO ↔ NO
and the LCO ↔ HCO is discontinuous (1st-order). For
µ̄ = 0 the HCO ↔ NO is the transition from the CO
staggered state (2020) to the Mott state (1111).

The right part of Figure 3 presents the corresponding
phase diagrams as a function of electron concentration.
We observe simple linear boundaries between phases also,
but the LCO-HCO transition does not take place here.
For some range of electron concentrations there is an area
between the LCO and HCO states with a constant value
of chemical potential (for fixed U/4W ) which leads to a
state with phase separation (PS). The state with phase
separation of CO has been observed also for EHM in the
case t �= 0 [10].

The range of electron concentrations with a stable
LCO phase (0.37, 0.63) and (1.37, 1.63) remains the same
irrespectively of the value of U/4W (the result is obvious
due to the fact that the (1010) order does not include elec-
tron pairs). The critical points for U → ∞ of LCO phase
are in a good agreement with the percolation limit in the
lattice gas (see Appendix).

Much more unexpected is the invariability of HCO
boundaries as a function of on-site interaction. The con-
centration range of HCO (0.86, 1.14) remains the same for
0 ≤ U/4W ≤ 1.

Fig. 4. The Monte Carlo snapshot of the ordered state near the
ground state (kBT/W = 0.0125, U/4W = 0.6, n = 0.68) for
square lattice L = 16 (with respect to the periodic boundary
condition). The overall checkerboard charge order include the
‘pure’ LCO state (white area) and the separated HCO domains
(the dark gray area). Phase separation of LCO and HCO states
is observed in the range of the parameters corresponding to the
jumpwise change in the electron concentration as a function of
chemical potential.

3.2 Finite temperatures

3.2.1 Half-filling case

The case of n = 1 is well-known [12–24]. It is a partic-
ular case for which we know the analytical relation be-
tween the chemical potential and the interaction terms
µ = 1

2U + z0W for any dimension (z0 is the number of
nearest-neighbors). Consequently, for the half-filling case
we can use the canonical simulation. Figure 5a presents
the results for the AL-EHM model for n = 1 and the BC
model in a suitable limit when the external magnetic field
is zero (the rhomb represents the critical points between
AF and paramagnetic order). A detailed comparison of
the results for both models is made in Section 4.

At the half-filling we observe two types of ordered
phases (HCO, ICO) and NO state. For U/4W > 1 the
system is in the disordered Mott state. In the range
0.77 < U/4W ≤ 1 there is a discontinuous (1st order)
transition between CO (HCO) and NO phase. At the
point U/4W = 0.77, kBT/W = 0.61 we observe tricrit-
ical (TCP) behavior of the system. At this point the line
of the phase transition and the order-order boundary join.
For U/4W < 0.77 the transition becomes a 2nd order (we
observe the sequence HCO ↔ ICO ↔ NO).

3.2.2 The case of 0 ≤ n ≤ 2

In low temperatures the phase diagram remains qualita-
tively the same as in GS (Fig. 6). The PS state changes
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Fig. 5. (a) The phase diagram for AL-EHM at n = 1 and BC
model at H = 0 (MC, *after [29]). Comparison of the location
of the tricritical point (TCP). (b) Phase diagram near n = 1
for U/4W = 0.78 (GCMC). Small boxes present histograms
of order parameter for (A) second order (n = 0.96, kBT/W =
0.58) and (B) first order phase transition (n = 1.00, kBT/W =
0.60).

into the ICO state (which is in fact a mixed phase of the
LCO and the HCO states). The phase boundaries loose
their linear character but the type of order remains the
same.

Figure 7 presents a full phase diagram in the plane |n−
1| vs. U/4W vs. kBT/W . For infinite U (Fig. 7b inset) we
observe only the LCO phase. Note, that for infinite on-site
repulsion only empty and singly occupied sites (for n ≤
1) can exist, which leads to the classical lattice gas limit
(see Appendix also). The maximum value of the charge
order critical temperature occurs at the quarter-filling (for
electrons n = 0.5 or for holes n = 1.5). In the regime 1 <
U/4W < ∞ the shape of the phase transitions line does
not change qualitatively. The LCO critical temperature
very weakly depends on the value of the on-site interaction
(cf. Figs. 7a and 7b inset).

The region of 0 ≤ U/4W ≤ 1 is the most interesting
for analysis (Fig. 7). One can observe all ordered phases.
In the range of 0.6 < U/4W < 1 the LCO second or-
der transition boundary (along with the structural LCO-
ICO boundary) remains almost the same as for infinite U

Fig. 6. Phase diagrams as a function (a) of reduced chemical
potential µ̄/4W = (µ − 1

2
U − 4W )/4W and U/4W , (b) of the

electron concentration n and U/4W , plotted for kBT/W =
0.25. Denotations as in Figure 3.

(Figs. 7b, 7c). The LCO critical temperature T LCO
c goes

down to zero with decreasing on-site repulsion U/4W → 0.
The HCO phase can be observed for the electron con-

centrations 0.86 < n < 1.14. The critical temperature
T HCO

c grows with decreasing U . For 0.77 < U/4W ≤ 1
the first order transitions occur between HCO and NO
states, while for U/4W smaller than 0.77 (the tricritical
point for n = 1, Fig. 5a) the transitions have continu-
ous character in the whole range of concentrations. On
the TCP line (Fig. 7a, dotted line) the 1st-, 2nd-order
phase transitions and HCO-ICO order-order boundaries
are joined (Figs. 5b, 7b).

In the 0 ≤ U/4W ≤ 1 regime the ICO phase exists
between the LCO and the HCO phases (Figs. 7a, 7b).
For 0.77 < U/4W < 1, the T ICO

c takes a smaller value
than max(T LCO

c , T HCO
c ). For U/4W < 0.77 the maxi-

mum value of T ICO
c is also the highest value of critical

temperatures for all charge ordered states.

4 The equivalent models

Nontrivial transformation from model (1) to spin model is
based on the definition of equivalent pseudospin operators:

Si = ni − 1 = ni↑ + ni↓ − 1, (2)

where {Si} can take four values {−1, 0
′
, 0

′′
, 1} (the sin-

gle and double apostrophe indicate the double presence of
0-state).

The form of equation (1) is now

H(Si) =
1
2
U

∑

i

S2
i + W

∑

<ij>

SiSj − µ̄
∑

i

Si + C,

C = −µ̄N − N

2
(U + zoW ), (3)

where µ̄ = µ − 1
2U − zoW (zo is the number of nearest-

neighbors).
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Fig. 7. (a) Phase diagram of model (1) as a function of
kBT/W , |n− 1| and U/4W . Cross-section: (b) for fixed U/4W
values (numbers to the curves), (c) for given |n − 1| values
(numbers to the curves). Bold lines indicate the 2nd order
phase transitions, whereas thin lines- the order-order bound-
aries. Dashed and dotted lines indicate the 1st order and TCP
lines, respectively.

Fig. 8. Phase diagram of the pseudospin model (3). Notation
used: d = U/2, J = W , h = µ̄. Thick lines indicate the 2nd
order phase transitions (antiferromagnetic ↔ paramagnetic),
whereas thin lines- the order-order boundaries. Dashed and
dotted lines indicate the 1st order and TCP lines, respectively.

Thus, the EHM in the zero-bandwidth is equivalent
to the pseudospin model with single-ion anisotropy U/2
and exchange interaction W (antiferromagnetic if W > 0,
ferromagnetic if W < 0) in a effective magnetic field µ̄,
with double ’zero’ state degeneracy.

Figure 8 presents the phase diagrams of model (3)
(µ̄ ≥ 0 corresponds to a positive value of a magnetic field
in a pseudospin system). We use the canonical ensemble
MC for the pseudospin ({Si}) system for a square lattice
(L = 60, 80) with PBC. Thick, dashed and dotted lines
indicate the 2nd-, 1st-order transitions and TCP-line, re-
spectively. Thin lines indicate structural boundaries of the
pure AF phases (1, 0), (1, −1) and the intermediate or-
dered phase (1, x) (defined as a structure of coexisting cells
of pure AF phases, where x = {−1, 0}). Order-order lines
are determined using cluster analysis of ordered structures
(analogous method as described in Section 2, see also our
previous paper [33]).

To eliminate the spin degeneracy in model (3) we map
it on to a standard S = 1 Ising model [19]. The double
degeneracy of every Si = 0 leads to a factor of 2 in the
partition function of the classical spin system (we def. {S̃i}
as {−1, 0, 1}), thus the total multiplication factor is equal:

∏

i

21−S̃2
i = 2

∑
i(1−S̃2

i ).
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We rewrite the partition function of model (3) as follows:

Z =
∑

{Si}={−1,0,0,1}
exp[−βH(Si)]

=
∑

{S̃i}={−1,0,1}
exp[−βH(S̃i)] · 2

∑
i(1−S̃2

i )

=
∑

S̃i

exp{−β[H(S̃i) + β−1 ln 2
∑

i

(S̃2
i − 1)]}

=
∑

S̃i

exp[−βH̃(S̃i)], (4)

where H̃ is the Hamiltonian of the standard S = 1
Ising model, but with the effective temperature-dependent
single-ion anisotropy:

H̃ =
(

1
2
U + β−1 ln 2

) ∑

i

S̃2
i + W

∑

<ij>

S̃iS̃j

−µ̄
∑

i

S̃i − C′, (5)

where C′ = C − Nβ−1 ln 2.
Now, we redefine the model parameters:

∆ =
1
2
U + kBT ln 2, (6)

J = W, (7)

H = µ̄ = µ − 1
2
U − zoW, (8)

and finally we obtain the classical Blume-Capel model
with {S̃i} = {−1, 0, 1} in the magnetic field:

HBC = ∆
∑

i

S̃2
i + J

∑

<ij>

S̃iS̃j − H
∑

i

S̃i. (9)

The phase diagram of model (3) is similar to that of the
well-known BC model (9) (cf. phase diagram in [29]). From
equation (6) we see that the results are identical in the
ground state when ∆ = U/2. More complicated situation
occurs in finite temperatures, the critical points of model
(9) are shifted by about kBT ln 2 in the T = const. plane
relative to corresponding points of model (3) (cf. Fig. 5a).
Our results are in good agreement with [29–31].

5 Summary

The Monte Carlo studies of the AL-EHM and the equiv-
alent Ising S = 1 AF model in the presence of magnetic
field are performed for 2D square lattice with PBC. The
grand canonical ensemble is used for the electron model,
while the canonical one for the spin model. The results
of both models are complementary. The phase diagrams
of the models analyzed include the first- and second-order
transitions and tricritical points. It has been shown that

the ordered state contains three types of staggered phases
(CO in Al-EHM and AF in the spin model) in a wide range
of model parameters (e.g. the electron concentration and
chemical potential).

It is undoubtedly important to discuss the physical
reflection of the incommensurate charge orderings (be-
yond quarter- and half-filling): are these states stable?
The response depends on the value of the hopping tij ,
which in this paper has been arbitrarily assumed zero.
The case of insignificant mobility in the ground state
leads to the charge orderings in the domains and in higher
temperatures to the appearance of a stable mixed phase.
For t = 0, the incommensurate CO states correspond
to the stable uncompensated antiferromagnetism in the
equivalent spin model following from the quantitative
excess of spins in one direction in the presence of magnetic
field. In real systems the bandwidth is different from
zero. The question is whether the analysis for a finite t
changes qualitatively or only quantitatively the obtained
results. The analysis for a small hopping can lead to
weak magnetic correlations (the effect of the kinetic
exchange ∼2t2ij/U) which do not modify the present
charge ordering. The quantum fluctuations exert the
greatest influence on the ground state but do not change
qualitatively the character of the phase diagrams at
finite temperatures. For higher t the situation drastically
changes. The mobility of the electrons (or holes) will
suppress the staggered order. The high-temperature series
expansion method [22] has shown that for positive U
the presence of the hopping term acts to destabilize the
charge-ordered phase and the tricritical point moves to-
wards smaller U and higher temperatures. Since the finite
band case can only suppress the range of the existence
of charge ordered phases, our new results of AL-EHM
obtained in the whole range of electron concentration
show the scale of charge order presence in the widest case.

In this paper we analyze the order-order boundaries
for the first time. The multiphase structure of finite-
temperature phase diagram is presented. The cluster anal-
ysis illustrates the microscopic mechanism of the transi-
tion from order to disorder, especially the difference be-
tween 1st- and 2nd-order phase transition. Moreover, in
low temperatures the existence of the state with phase
separation of different charge ordered phases is proved.

We expect that detailed results concerning the criti-
cal behavior (the critical exponents) in AL-EHM and BC
models will yield no identity. For the AL-EHM we obtain
results which are rather in the class of the percolation
transition problem, while the equivalent spin model is in
the Ising-type class.

The Author is grateful to S. Robaszkiewicz for very important
suggestions and many useful discussions. The important advice
by T. Kostyrko and P. Tomczak are also gratefully acknowl-
edged. This work was supported in part by the Polish State
Committee for Scientific Research, Grant No: 1 P03B 084 26;
2004-2006.
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Fig. A.1. The case of U/zoW → ∞ (n ≤ 1). The lines in-
dicate critical temperatures obtained by MFA (dashed), BPA
(dotted) and MC (solid). The stars indicate the percolation
threshold (PT) at the ground state.

Appendix

For the sake of comparison with our results we present
here selected solutions for AL-EHM obtained by different
methods (MFA, BPA).

In the limit of U → ∞ the model is equivalent to the
classical two-component lattice gas where ni = {0, ↑, ↓}
(for n ≤ 1). In the absence of external magnetic field the
electron gas can be treated as the charged one-particle
classical lattice gas [28]. In this case, the MC results can
be compared with the analytical results. The solutions
concerning the critical temperature are for BPA [35]

kBT BPA
c = W/ ln

(q − n)2

(1 − 2n)q + q2
,

where q = n(zon − 1)/(zo − 1), and for MFA [19]

kBT MFA
c = zoWn(1 − n)

n is the electron concentration and zo is the number of
nearest-neighbors. The range of charge order changes de-
pends on the method used (cf. Fig. A.1 for n ≤ 1). For
the MFA we observe that the ordered phase exists for any
electron concentration, while for BPA and MC there is a
limited range of n with a stable charge order (note that
on the ground state the percolation threshold θ = 0.371
[28] and the MC results n = 0.37 coincide). The maximum
critical temperature is always for the quarter-filling.

The most comprehensive analysis for the whole range
of U/zoW has been made by Micnas et al. [19] using
the mean field approximation. In Figure A.2 we present
the phase diagrams obtained using MFA (dashed lines)
and MC (solid lines) method for several value of U/zoW .

Fig. A.2. Phase diagrams of the model (1) for n ≤ 1 obtained
using MFA (dashed lines) and MC method (solid lines) for sev-
eral U/zoW . The box shows solutions for 1st-order transition
(MFA, * after [19]).

Our MC results for 2D are qualitatively comparable with
MFA solutions (which are exact in D → ∞). We ob-
serve analogous character of phase transition, although
the range of appearance of continuous and discontinuous
transitions is different (cf. Figs. 7 and 10). The 1st or-
der phase transitions take place at 0.5 < U/zoW ≤ 1
for MFA analysis, while the range of 0.77 < U/4W ≤ 1
for discontinuous transition is found using MC simulation.
Irrespective of the method used we observe the Mott tran-
sition for U/zoW = 1 between HCO (2020) and the NO
state (1111).
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